Proton Improvement Plan

Bob Zwaska

September 9, 2013 All-Experimenters Meeting

Basics

- Linac and Booster are now running
 - ➤ Being tuned for HEP
 - Some PIP improvements being realized
- Major PIP work continues
 - ➤ Preparing major items for future downtimes / shutdowns
 - Cavities, vacuum, transformers, power supplies...
 - ➤ Studies in Linac & Booster
- Balancing time:
 - ➤ No longer have to compete with shutdown for resources
 - Now have to compete with operations

Operating Status

- Booster is providing beam for NuMI. Typical numbers:
 - > 3 Hz beam
 - $\triangleright \sim 2.5e12 \text{ protons / pulse}$
 - $\triangleright \sim 2.5e15 \text{ protons / hour}$
 - Present loss levels would accommodate
 6 x throughput
- Study periods have occasionally higher beam rates and intensities:
 - > NTF (Linac)
 - ➤ Booster Studies
- Limited mostly by Main Injector
 - ➤ Lower rep rate because there is no slip stacking
 - ➤ Lower intensity until MI conditions

Linac Items

- Linac Hatch installed
 - ➤ Allow removal and installation of material into lower-level
 - ➤ Chief need is to put in new house-power transformer
 - Next shutdown
- Progress on LEL Power supplies and amplifiers
 - Test cells of Marx generator for high-current, high-voltage pulses
 - ➤ Plans for klystron replacements of amplifier tubes
 - Prototype in the works

Bob Zwaska

Cavity Refurbishment

- Refurbishment is the limiting task in getting the Booster to 15 Hz
- Booster has 17/19 cavities in place with two out for refurbishment
 - > This will continue throughout the next few years
- Next refurbished cavity to be installed this week
 - > Cavity to be removed was the firstrefurbished cavity which is leaking RF
 - > This will continue throughout the next few years
- PIP anticipates more technicians now that the shutdown is over
 - > These persons have not become available yet, even though the machines are operating now
- Also need to build new tuners with new ferrites
 - > Issues with ferrite vendors and designs

Cavity (RF17) preparing to repair flanges

Cones and new cooling loops

Sept. 9, 2013

Refurbishment Projections

- Have had to rework some of the first-refurbished cavities
 - ➤ Process is improving hopefully accelerating
 - > Expect more perturbation as operations exercises cavities to higher rates

Loss reduction: Booster Aperture

- > Magnet moves
- > Scans
- ➤ Location: Long 16 Vertical Move
- > Fourth magnet move
- > Ready for a fifth
- > Plan several more as time allows

Sept. 9, 2013

All-Experimenters Meeting

Loss Control: Booster Notching

- A "notch" of beam is removed from the Booster near injection to allow the risetime of the extraction
- With the previous scheme, at 15 Hz we would be putting 300 W of losses into the Booster from the notch alone
 - This loss was localized in a few gradient magnets
- PIP has a 3-stage approach to eliminating the losses from the notch
 - 1. Modify the notcher arrangement in the Booster
 - Relocated loss into a dump
 - 2. Cog with the corrector magnets instead of RF phasing
 - Under test now
 - 3. Make most of the notch in the Linac
 - Loss at 750 keV instead

New Absorber & Kickers

- Relocate notch location from a series of kickers into a welldesigned dump
 - Old extraction area to Main Ring
- Capable of absorbing 300 W of notching
 - ➤ Booster loss budget is 525 W
- New notcher has been operating since startup this year
- Future improvements: shorter kickers for cleaner pulses

Laser Notcher

- Neutralize a portion of the Linac beam with a pulsed laser
 - Remove the majority of the loss from the Booster entirely
- Prototype of the laser frontend is operating
 - > Atypical laser
 - Multiple timescales
 - High-pulse power
 - Moderate average power (few W)
 - Final gain stages being specified
- Prototype of interaction region built with 3-D printer
 - Looking into collaborative production and testing of the final chamber

Booster Aperture

- > Magnet moves
- > Scans
- ➤ Location: Long 16 Vertical Move
- > Fourth magnet move
- > Ready for a fifth
- > Plan several more as time allows

Sept. 9, 2013

All-Experimenters Meeting

Summary

Proton Source is operating

- > Operations are at a moderate level of intensity with low losses
- Some PIP improvements in place
- ➤ High-power beam awaits MI conditioning –or Recycler slip stacking
 - or Booster Neutrino Beam

Work continues alongside operations

- > Refurbishment is the limiter to reaching 15 Hz operation
 - Critically need labor to support the refurbishment effort and coordination of various groups (also operations again)
 - Other systems also need replacement but not time-critical yet
- > Studies in progress to reduce and control losses
- ➤ Major upgrades still in the work to ensure long-term viability of the Proton Source

Proton Improvement Plan

Bob Zwaska

September 9, 2013 All-Experimenters Meeting

Proton Improvement Plan Projection

Booster - Historical Performance

Proton Source Yearly and Integrated Output (E19)

Goals for the Proton Improvement Plan

- The *Proton Improvement Plan* should enable Linac/Booster operation capable of
 - ➤ Delivering 2.25E17 protons/hour (at 15 Hz) in 2016 while
 - ➤ Maintaining Linac/Booster availability > 85%, and
 - ➤ Maintaining residual activation at acceptable levels and also ensuring a useful operating life of the proton source through 2025.
- The scope of the *Proton Improvement Plan* includes
 - ➤ Upgrading (or replacing) components to increase the Booster repetition rate
 - > Replacing components that have (or will have) poor reliability
 - > Replacing components that are (or will soon become) obsolete
 - ➤ Implementing improvements or operational changes to reduce beam loss
 - > Studying beam dynamics to diagnose performance limitations
- Several significant activities are well underway

Booster

- 15 Hz Synchrotron
- Resonant Gradient Magnets
- Tunable RF Cavities
- 400 MeV to 8 GeV

Zwaska

All-Experimenters Meeting

Proton Improvement Plan

• Proton Task Force (PTF) FY10

- - ➤ Initial effort to understand Proton Source Concerns
 - Focused on reliability and modernization
- Proton Improvement Plan Workshop Jan 2011
 - > Review of PTF
 - > Review of additional issues associated with flux
- Management Structure 2011 Summer
 - > Established project team and ground rules
- Planning Structure 2011 Fall
 - Managers established for all subprojects
- Resource Loaded Schedule 2011 Winter
 - ➤ Bottoms-up estimation of all subprojects
- Detailed Project Organization 2012 January
 - > Project Management Plan
 - Project Design handbook
 - ➤ Accounting codes & signature authority

References

- A Plan for Delivery of 8-GeV Protons through 2025, Beams-doc-3781, http://beamdocs.fnal.gov/ADpublic/DocDB/ShowDocument? docid=3781
- Proton Source December 2010 Workshop, http://beamdocs.fnal.gov/ADpublic/DocDB/DisplayMeeting? conferenceid=114
- PIP Home Page: http://www-ad.fnal.gov/proton/PIP/PIP index.html

Booster Losses

- Losses at injection
 - ➤ Poorly captured beam
- Notch creation
 - > Gap for extraction
 - > Created with a kicker
 - > Lost in gradient magnet
- Slow losses at high-energy
 - > Optics issues
 - > RF variation
- Transition
 - Occasionally significant, but can usually be tuned away

Path to Higher Proton Throughput

- Loss reduction
 - ➤ Lower linac emittance
 - RFQ & linac lattice improvements
 - > Apertures & alignment
 - Comprehensive survey of apertures
 - Alignment where necessary (including within girders)
 - Opening apertures where possible
 - > Optics adjustment
 - Comprehensive survey of lattice and coupling
 - Control of tunes and chromaticity
 - Automated orbit and optics smoothing
 - > RF improvements
 - Increased voltage from amplifiers
 - Cavity modification/replacements
 - > Instabilities
 - Dampers
 - > Injection painting

- Orbit Control
 - Magnetic Cogging
 - Prerequisite for other work
- Loss Control
 - Rework of notching in Booster
 - Perform earlier in cycle
 - New notch kickers and absorber
 - Exploration of full or partial notching in Linac
 - > Collimation system
 - Operate as true, two-stage system
 - Run beam near primary scatterer
 - Optimize primary scatter thickness
 - Adjust radiation shielding where advantageous